Search results

Search for "chemical bath deposition" in Full Text gives 26 result(s) in Beilstein Journal of Nanotechnology.

Influence of thickness and morphology of MoS2 on the performance of counter electrodes in dye-sensitized solar cells

  • Lam Thuy Thi Mai,
  • Hai Viet Le,
  • Ngan Kim Thi Nguyen,
  • Van La Tran Pham,
  • Thu Anh Thi Nguyen,
  • Nguyen Thanh Le Huynh and
  • Hoang Thai Nguyen

Beilstein J. Nanotechnol. 2022, 13, 528–537, doi:10.3762/bjnano.13.44

Graphical Abstract
  • investigated using various techniques such as chemical bath deposition [1], sputtering [2], hydrothermal synthesis [10][11][12][13], wet chemistry [14], thermal reduction [15], and electrodeposition (ED) [20]. Among these methods, ED shows many advances thank to its simplicity and rapidity. Additionally, it
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2022

High-responsivity hybrid α-Ag2S/Si photodetector prepared by pulsed laser ablation in liquid

  • Raid A. Ismail,
  • Hanan A. Rawdhan and
  • Duha S. Ahmed

Beilstein J. Nanotechnol. 2020, 11, 1596–1607, doi:10.3762/bjnano.11.142

Graphical Abstract
  • hydrothermal methods, chemical bath deposition, laser ablation in liquid reverse microemulsion, electrospinning, sol–gel, electrochemical method, template method, sonochemical method, and hydrochemical bath deposition [10][11][12][13]. The size of Ag2S NPs depends on the preparation conditions [14]. Ag2S NPs
PDF
Album
Full Research Paper
Published 21 Oct 2020

Band tail state related photoluminescence and photoresponse of ZnMgO solid solution nanostructured films

  • Vadim Morari,
  • Aida Pantazi,
  • Nicolai Curmei,
  • Vitalie Postolache,
  • Emil V. Rusu,
  • Marius Enachescu,
  • Ion M. Tiginyanu and
  • Veaceslav V. Ursaki

Beilstein J. Nanotechnol. 2020, 11, 899–910, doi:10.3762/bjnano.11.75

Graphical Abstract
  • (MOCVD) [18][19], hydrothermal [4], chemical bath deposition (CBD) [20], sol–gel spin coating [21][22][23][24][25][26][27][28][29], and spray pyrolysis [28][29][30][31][32][33][34]. Among these techniques, the sol–gel spin coating method has the advantage of ensuring easy control and handling of
PDF
Album
Full Research Paper
Published 12 Jun 2020

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • pioneered by the teams of Nair, Nezu, and Hodes in the mid-2000s [19][23][24]. The record PCE of 7.5%, achieved with solar cells based on Sb2S3 grown by chemical bath deposition (CBD) into mesoporous TiO2, shows the excellent potential of Sb2S3 as a PV absorber, and the suitability of its fabrication by
  • , the PCE increased by a factor of ≈2.5 (1.5 ± 0.1% vs 3.7 ± 0.4%). The highest VOC of 726 mV observed in this study is comparable to the highest VOC of 732 mV reported for planar TiO2/Sb2S3 solar cells, where Sb2S3 was grown by chemical bath deposition [21]. Increasing the Sb2S3 layer thickness further
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

CuInSe2 quantum dots grown by molecular beam epitaxy on amorphous SiO2 surfaces

  • Henrique Limborço,
  • Pedro M.P. Salomé,
  • Rodrigo Ribeiro-Andrade,
  • Jennifer P. Teixeira,
  • Nicoleta Nicoara,
  • Kamal Abderrafi,
  • Joaquim P. Leitão,
  • Juan C. Gonzalez and
  • Sascha Sadewasser

Beilstein J. Nanotechnol. 2019, 10, 1103–1111, doi:10.3762/bjnano.10.110

Graphical Abstract
  • passivation layer was deposited on top of the samples. CdS was deposited by conventional chemical bath deposition (CBD) with a solution of 1.1 M ammonia, 0.100 M thiourea, and 0.003 M cadmium acetate [36]. The solution is mixed in a beaker at room temperature, and the samples are immersed into the beaker
PDF
Album
Full Research Paper
Published 22 May 2019

A Ni(OH)2 nanopetals network for high-performance supercapacitors synthesized by immersing Ni nanofoam in water

  • Donghui Zheng,
  • Man Li,
  • Yongyan Li,
  • Chunling Qin,
  • Yichao Wang and
  • Zhifeng Wang

Beilstein J. Nanotechnol. 2019, 10, 281–293, doi:10.3762/bjnano.10.27

Graphical Abstract
  • substrate for electroactive Ni(OH)2 in supercapacitors because of the large surface area, good conductivity and compatibility with nickel hydroxide. Yuan et al. synthesized porous Ni(OH)2/NiOOH net on Ni foam by a chemical bath deposition and the electrode showed good rate capability [24]. Ke et al
PDF
Album
Full Research Paper
Published 25 Jan 2019

Uniform Sb2S3 optical coatings by chemical spray method

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Ilona Oja Acik,
  • Arvo Mere and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 198–210, doi:10.3762/bjnano.10.18

Graphical Abstract
  • chemical bath deposition (CBD) [3][4], spin coating [5], atomic layer deposition (ALD) [6] or chemical spray pyrolysis (CSP) [7] method, has been applied in extremely thin absorber (ETA) solar cells due to its excellent absorption coefficient in the visible light spectrum (1.8 × 105 cm−1 at 450 nm) [1][2
  • –Weber island growth of amorphous Sb2S3 (and in some cases leaf-like grains of polycrystalline Sb2S3) have been observed in Sb2S3 layers grown by chemical bath deposition on glass [47][48], In2O3/Sn (ITO) [49], planar TiO2 [16] and TiO2 nanotube arrays [50], by sequential deposition [51] and spin coating
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2019

Femtosecond laser-assisted fabrication of chalcopyrite micro-concentrator photovoltaics

  • Franziska Ringleb,
  • Stefan Andree,
  • Berit Heidmann,
  • Jörn Bonse,
  • Katharina Eylers,
  • Owen Ernst,
  • Torsten Boeck,
  • Martina Schmid and
  • Jörg Krüger

Beilstein J. Nanotechnol. 2018, 9, 3025–3038, doi:10.3762/bjnano.9.281

Graphical Abstract
  • etching (22 min at 250 W in Ar atmosphere), for example, is sufficient to uncover the islands while keeping the molybdenum substrate isolated (Figure 12c). Finally, the buffer layers (CdS, ZnO) and the front contact (Al:ZnO) were deposited (Figure 12d). CdS was applied by a wet-chemical bath deposition
PDF
Album
Review
Published 12 Dec 2018

Optimization of Mo/Cr bilayer back contacts for thin-film solar cells

  • Nima Khoshsirat,
  • Fawad Ali,
  • Vincent Tiing Tiong,
  • Mojtaba Amjadipour,
  • Hongxia Wang,
  • Mahnaz Shafiei and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2018, 9, 2700–2707, doi:10.3762/bjnano.9.252

Graphical Abstract
  • a two-step process of sulfurization of stacked metallic layers of Cu/Sn/Zn. Then a 60 nm CdS buffer layer was deposited using chemical bath deposition (CBD). This was followed by sputtering of a 30 nm ZnO layer and a 350 nm ITO layer as transparent conductive oxide (TCO) layers. As the last step, a
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2018

Spin-coated planar Sb2S3 hybrid solar cells approaching 5% efficiency

  • Pascal Kaienburg,
  • Benjamin Klingebiel and
  • Thomas Kirchartz

Beilstein J. Nanotechnol. 2018, 9, 2114–2124, doi:10.3762/bjnano.9.200

Graphical Abstract
  • demonstrated an efficiency exceeding 7% when assembled in an extremely thin absorber configuration deposited via chemical bath deposition. More recently, less complex, planar geometries were obtained from simple spin-coating approaches, but the device efficiency still lags behind. We compare two processing
  • ] – especially when devices are compared that apply the same HTM and Sb2S3 deposition method [26][29][30][31]. Typically Sb2S3 is fabricated via chemical bath deposition (CBD) [2][39][40][41] with the drawback of a complex growth mechanism that includes heterogeneous nucleation and exponential growth which
  • apparently different mechanisms governing film formation in the Sb-BDC and Sb-TU processes. Most deposition methods such as chemical bath deposition [2][41], atomic layer deposition [22][32], thermal evaporation [33][35][46] and the here-discussed spin-coating [29][37] produce amorphous films that are
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2018

Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices

  • T. Anh Thu Do,
  • Truong Giang Ho,
  • Thu Hoai Bui,
  • Quang Ngan Pham,
  • Hong Thai Giang,
  • Thi Thu Do,
  • Duc Van Nguyen and
  • Dai Lam Tran

Beilstein J. Nanotechnol. 2018, 9, 771–779, doi:10.3762/bjnano.9.70

Graphical Abstract
  • simple chemical bath deposition and photoreduction methods. The analysis of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images, energy-dispersive X-ray spectroscopy (EDS), UV–vis absorption, and photoluminescence (PL) spectra results were used to verify the incorporation
  • -oxide semiconductors are still of significant consideration. In this work, we propose a simple photochemical approach to synthesize Au NPs directly deposited on the surface of pre-synthesized ZnO nanostructures synthesized by chemical bath deposition on glass substrates. Morphological evaluation
  • photocatalytic decomposition. Conclusion ZnO and hybrid Au NP/ZnO films on glass substrates were synthesized using a simple chemical bath deposition and photoreduction process. The surface plasmonic resonance of the Au NPs on sub-micrometer ZnO spheres was verified by UV–vis absorption, photoluminescence and
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2018

Oxidative chemical vapor deposition of polyaniline thin films

  • Yuriy Y. Smolin,
  • Masoud Soroush and
  • Kenneth K. S. Lau

Beilstein J. Nanotechnol. 2017, 8, 1266–1276, doi:10.3762/bjnano.8.128

Graphical Abstract
  • over the deposition (such as film thickness, conformality, uniformity, morphology) than current solution-based techniques such as chemical bath deposition [18], electrodeposition [19], and casting from suspension [20]. As a result, oCVD has garnered significant attention in recent years as an
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • capacitor and magnetic material [194]. NiO is considered to be a promising alternative electrode material in redox electrochemical capacitors because of its easy synthesis and high capacitance. Porous NiO–rGO hybrid films were prepared by combination of electrophoretic deposition and chemical bath
  • deposition methods [195][196]. Like other graphene–metaloxide hybrid systems, NiO–graphene hybrids are largely used for LIB applications [197][198][199]. Monolayer graphene/NiO nanosheet composite materials also have large application for supercapacitors [200][201][202]. 3D NiO/ultrathin derived graphene
PDF
Album
Review
Published 24 Mar 2017

Performance of natural-dye-sensitized solar cells by ZnO nanorod and nanowall enhanced photoelectrodes

  • Saif Saadaoui,
  • Mohamed Aziz Ben Youssef,
  • Moufida Ben Karoui,
  • Rached Gharbi,
  • Emanuele Smecca,
  • Vincenzina Strano,
  • Salvo Mirabella,
  • Alessandra Alberti and
  • Rosaria A. Puglisi

Beilstein J. Nanotechnol. 2017, 8, 287–295, doi:10.3762/bjnano.8.31

Graphical Abstract
  • cells (DSSCs). Fourier transform infrared (FTIR) spectra of the extract revealed the presence of anchoring groups and coloring constituents. Two different structures were prepared by chemical bath deposition (CBD) using zinc oxide (ZnO) layers to obtain ZnO nanowall (NW) or nanorod (NR) layers employed
PDF
Album
Full Research Paper
Published 30 Jan 2017

Performance of colloidal CdS sensitized solar cells with ZnO nanorods/nanoparticles

  • Anurag Roy,
  • Partha Pratim Das,
  • Mukta Tathavadekar,
  • Sumita Das and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2017, 8, 210–221, doi:10.3762/bjnano.8.23

Graphical Abstract
  • 0.20 and 0.54 V, respectively [10][13]. Interestingly, in all the above cases, the successive ion-layer absorption and reaction (SILAR) process has been used as the sensitization process for QD sensitization. In addition to SILAR, chemical bath deposition (CBD) has also been used as a CdS sensitization
  • situ synthesis and deposition of QDs by the chemical bath deposition (CBD) or successive ionic layer adsorption and reaction (SILAR) method leads to the direct growth of QDs onto the electrode material surface by the chemical reaction of respective ionic species [48][49][50]. In order to understand the
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2017

Sb2S3 grown by ultrasonic spray pyrolysis and its application in a hybrid solar cell

  • Erki Kärber,
  • Atanas Katerski,
  • Ilona Oja Acik,
  • Arvo Mere,
  • Valdek Mikli and
  • Malle Krunks

Beilstein J. Nanotechnol. 2016, 7, 1662–1673, doi:10.3762/bjnano.7.158

Graphical Abstract
  • Sb2S3 sensitizer, yielded conversion efficiencies above 3% [15][16]. The central part of the particular system, the Sb2S3 absorber, has so far been produced mainly by chemical bath deposition (CBD) for which the presence of impurities such as antimony hydroxide is inherent, and it is essential to use
  • solid state solar cells that use Sb2S3 absorber on top of a planar, fibrous, or mesoporous (mp) TiO2 layer. The technologies for growing Sb2S3 are denoted as “spray” for chemical spray pyrolysis, CBD for chemical bath deposition, ALD for atomic layer deposition, and “spin-c.” for spin coating
PDF
Album
Supp Info
Full Research Paper
Published 10 Nov 2016

Chemical bath deposition of textured and compact zinc oxide thin films on vinyl-terminated polystyrene brushes

  • Nina J. Blumenstein,
  • Caroline G. Hofmeister,
  • Peter Lindemann,
  • Cheng Huang,
  • Johannes Baier,
  • Andreas Leineweber,
  • Stefan Walheim,
  • Christof Wöll,
  • Thomas Schimmel and
  • Joachim Bill

Beilstein J. Nanotechnol. 2016, 7, 102–110, doi:10.3762/bjnano.7.12

Graphical Abstract
  • PS molecules that are grafted to a silicon wafer forming a very thin film. The obtained ZnO thin films, which were synthesized via chemical bath deposition (CBD) at 60 °C, were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), AFM and infrared spectroscopy (IR). Our
  • by chemical bath deposition under moderate conditions. On a SiOx surface, island growth of the ZnO was observed. A polystyrene brush on the other hand acts as a structure-inducing template and leads to the formation of a homogeneous, compact film that shows a preferred crystal orientation along the
PDF
Album
Supp Info
Full Research Paper
Published 25 Jan 2016

Blue and white light emission from zinc oxide nanoforests

  • Nafisa Noor,
  • Luca Lucera,
  • Thomas Capuano,
  • Venkata Manthina,
  • Alexander G. Agrios,
  • Helena Silva and
  • Ali Gokirmak

Beilstein J. Nanotechnol. 2015, 6, 2463–2469, doi:10.3762/bjnano.6.255

Graphical Abstract
  • rise to light emission. Experimental ZnO growth Chemical bath deposition (CBD), a low-cost solution-based technique [18][19], is used to grow ZnO nanorods on oxidized silicon wafers with previously fabricated, highly doped, p-type, nanocrystalline silicon microstructures. The samples were precleaned by
PDF
Album
Supp Info
Full Research Paper
Published 23 Dec 2015

Template-controlled mineralization: Determining film granularity and structure by surface functionality patterns

  • Nina J. Blumenstein,
  • Jonathan Berson,
  • Stefan Walheim,
  • Petia Atanasova,
  • Johannes Baier,
  • Joachim Bill and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2015, 6, 1763–1768, doi:10.3762/bjnano.6.180

Graphical Abstract
  • controlling the properties of a self-assembling mineral film by means of the functionality and polarity of a substrate template. In the presented case, a zinc oxide film is deposited by chemical bath deposition on a nearly topography-free template structure composed of a pattern of two self-assembled
  • chemical functionality pattern of the substrate, where the chemical pattern acts as a template. A site-dependent granularity in mineralized ZnO-containing films is observed by self-assembly of nanoparticles during chemical bath deposition on patterned self-assembled monolayers. The influence of template
  • lithography (where increasingly smaller structures are sought, e.g., in the field of semiconductor nanolithography). Here, the copying of a given structure by self-templating may provide an alternative to conventional replication. In this study, ZnO-containing films were prepared using chemical bath
PDF
Album
Full Research Paper
Published 20 Aug 2015

Morphology control of zinc oxide films via polysaccharide-mediated, low temperature, chemical bath deposition

  • Florian Waltz,
  • Hans-Christoph Schwarz,
  • Andreas M. Schneider,
  • Stefanie Eiden and
  • Peter Behrens

Beilstein J. Nanotechnol. 2015, 6, 799–808, doi:10.3762/bjnano.6.83

Graphical Abstract
  • present a three-step process for the low-temperature chemical bath deposition of crystalline ZnO films on glass substrates. The process consists of a seeding step followed by two chemical bath deposition steps. In the second step (the first of the two bath deposition steps), a natural polysaccharide
  • hyaluronic acid and the time of its addition on the morphology of the resulting ZnO film were investigated. By meticulous adjustment of the parameters in this step, the film morphology can be tailored to provide an optimal growth platform for the third step (a subsequent chemical bath deposition step). In
  • measurements of the electrical conductivity. Keywords: chemical bath deposition; hyaluronic acid; polysaccharide; transparent conductive oxide; zinc oxide; Introduction Zinc oxide is a unique material with a number of interesting properties such as piezo- and pyro-electricity [1][2], high optical
PDF
Album
Full Research Paper
Published 24 Mar 2015

Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates

  • Omar F. Farhat,
  • Mohd M. Halim,
  • Mat J. Abdullah,
  • Mohammed K. M. Ali and
  • Nageh K. Allam

Beilstein J. Nanotechnol. 2015, 6, 720–725, doi:10.3762/bjnano.6.73

Graphical Abstract
  • , The American University in Cairo, New Cairo 11835, Egypt 10.3762/bjnano.6.73 Abstract We report a facile synthesis of zinc oxide (ZnO) nanorod arrays using an optimized, chemical bath deposition method on glass, PET and Si substrates. The morphological and structural properties of the ZnO nanorod
  • realized by adjusting the synthesis conditions. Keywords: chemical bath deposition (CBD); nanorods; Raman; XRD; ZnO; Introduction Metal oxides are multifunctional materials with a wide range of applications encompassing photonic devices, high-K dielectrics, sensors, implants, and solar cells [1][2]. It
  • temperatures. Further, the fabrication conditions are not compatible with some substrates such as organic materials for flexible and wearable electronics. In contrast, the chemical bath deposition (CBD) method is a low-cost method, requiring low-temperature operation conditions that are suitable for large
PDF
Album
Full Research Paper
Published 12 Mar 2015

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • tubular structure of TiO2 nanotubes and 2D layered titanate nanosheets were also used for the photosensitization. The CdS quantum dots photosensitized TiO2 nanotubes by covalent bonding [21] or a sonication-assisted sequential chemical bath deposition approach [31] led to a more efficient separation of
PDF
Album
Review
Published 23 May 2014

Synthesis of indium oxi-sulfide films by atomic layer deposition: The essential role of plasma enhancement

  • Cathy Bugot,
  • Nathanaëlle Schneider,
  • Daniel Lincot and
  • Frédérique Donsanti

Beilstein J. Nanotechnol. 2013, 4, 750–757, doi:10.3762/bjnano.4.85

Graphical Abstract
  • Cd-free buffer layers are based on zinc and indium-compounds, with current record efficiencies obtained by chemical bath deposition (CBD, 19.7% and 19.1% for Zn(S,O,OH) [4][5], 15.7% for In(S,O,OH) [6]) or atomic layer deposition (ALD, 18.5% for Zn(O,S) [7], 18.1% for (Zn,Mg)O [8], 16.4% for In2S3 [9
PDF
Album
Full Research Paper
Published 13 Nov 2013

Polymer blend lithography: A versatile method to fabricate nanopatterned self-assembled monolayers

  • Cheng Huang,
  • Markus Moosmann,
  • Jiehong Jin,
  • Tobias Heiler,
  • Stefan Walheim and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2012, 3, 620–628, doi:10.3762/bjnano.3.71

Graphical Abstract
  • bottom of the holes could be functionalized with another silane for certain applications. For example, in our recent publication the holes, filled with APTES, were used for the growth of ZnO layers [1] by chemical bath deposition. Structured and nonstructured ZnO layers are used, e.g., in gas-sensor
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2012

Effect of deposition temperature on the structural and optical properties of chemically prepared nanocrystalline lead selenide thin films

  • Anayara Begum,
  • Amir Hussain and
  • Atowar Rahman

Beilstein J. Nanotechnol. 2012, 3, 438–443, doi:10.3762/bjnano.3.50

Graphical Abstract
  • Anayara Begum Amir Hussain Atowar Rahman Department of Physics, Gauhati University, Guwahati-781014, Assam, India 10.3762/bjnano.3.50 Abstract Nanocrystalline lead selenide (PbSe) thin films were prepared on glass substrates by a chemical bath deposition method, using sodium selenosulfate
  • crystallite size. The optical absorption spectra of the nanocrystalline PbSe films showed a blue shift, and the optical band gap (Eg) was found to increase from 1.96 to 2.10 eV with the decrease in crystallite size. Keywords: chemical bath deposition; lattice parameter; lead selenide; Nelson–Riley plot
  • ], microwave heating [9], pulsed laser deposition [10], electrochemical atomic layer epitaxy [11], and electrodeposition [12], the chemical bath deposition method [13][14] is relatively simple and cost-effective, and has the advantage that it allows control over deposition parameters such as the pH, the
PDF
Album
Full Research Paper
Published 06 Jun 2012
Other Beilstein-Institut Open Science Activities